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Abstract

The police may need to track down a fugitive or find a lost
child, but may only have the photos of them from decades
ago; Even with the web of facial recognition systems and
cameras now in place, if we don’t even know what the faces
of the people, we need to find look like, we won’t find them.
Unless we can do face aging. Face aging and rejuvenation is
to predict the face of a person at different ages. While tremen-
dous progress has been made in this topic, there is a central
problem remaining largely unsolved: the majority of prior
works requires paired training data, which is very rare in real
scenarios. To tackle these issues, in this paper, we develop a
novel CycleGAN-based (Cycle Generative Adversarial Net-
work) models, which enables face aging and rejuvenation to
be trained from multiple sets of unpaired face images with
different ages.

Introduction
I remember when Mr.Lu mentioned style transfer in class,
he said that the current applications of style transfer are just
cool, and sometimes the deep learning field needs these cool
things. I didn’t really believe it, so I went searching for some
real-life applications of style transfer, and found the face ag-
ing task.

Face ageing is essentially style transfer, with the identity
of the face as the ‘content’ of the style transfer and the age
attribute as the ‘style’ of the style transfer. The process of
ageing is actually the transfer of the ‘style’ of an older face to
the ‘content’ of a younger face, i.e. the ageing of a younger
face while keeping the identity features intact.

In the field of style transfer, tasks are divided into two
main categories: those trained with paired data and those
trained with unpaired data. In this context, paired data refers
to training sets with different styles of the same content, such
as images of the same person at different ages; similarly un-
paired are training sets with different styles of different con-
tent, such as images of different people at different ages.

It can be easy to tell, paired images are very difficult to
collect. The capture of day and night images of the same
scene requires the camera to remain in a constant posi-
tion. Images of the same person at different ages require
the person collecting the images to follow the volunteers
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for decades or even centuries. This is why existing paired
datasets are often online crawls of images of celebrities at
different ages, which admittedly allow for a large amount
of paired data to be collected quickly, but all of these im-
ages are from celebrities (e.g., Morph(Ricanek and Tesafaye
2006) , Celeb A(Liu et al. 2015), CACD (Chen, Chen, and
Hsu 2015)) and the image content is not extensive. This is
why the publication of the FGNET dataset (collected from
ordinary people, with only a thousand images) has attracted
attention and is often used as a test set, even though these
huge numbers of celebrity datasets already exist. Of course,
it is because the number of images in the FGnet(Lanitis, Tay-
lor, and Cootes 2002) dataset is so small that it can only be
used as a test set. Researchers are still eager for a universal
paired dataset.

A large portion of the existing dataset is unpaired. Such
images could not be used in research for a long time until
Junyan Zhu proposed the unpaired style transfer model Cy-
cleGAN(Zhu et al. 2017). CycleGAN uses the idea of for-
ward and then reverse translation in machine translation to
achieve impressive results in unpaired style transfer tasks.

In real life applications, 1) face aging can be applied to
short video software and camera software for entertainment
items such as filters and special effects 2) face verification is
currently used in all aspects of daily life, but face databases
are not updated from time to time, e.g., ID cards are usually
valid for ten years, and if you apply for an ID card at the
age of 18, the information does not expire until you are 28.
the face at 18 and the face at 25-28 often have some gap.
This is why it is often the case that train station gates fail
to recognize the face and then fail to pass. Face ageing, on
the other hand, can predict ageing faces and thus improve
the accuracy of face recognition. 3) The police may need to
track down a fugitive who has been on the run for years, but
may only have a photo of him from decades ago; they need
to find a child who has been lost for over a decade, but may
only have a family photo of him when he was a few years
old. Even with the web of facial recognition systems and
cameras now in place, if we don’t even know what the faces
of the people we need to find look like, we won’t find them.
But if we can do accurate face ageing, we can know exactly
what they currently look like, and with the Skynet system,
we can greatly improve the efficiency of the search.

It can be expected that in the future, unpaired face data



will dominate because of the ease of collection. If satisfac-
tory results can be achieved using unpaired faces trained
based on CycleGAN, this could be of great significance for
future face ageing tasks.

In the general task of training a network model using faces
of the same person of different ages, there is no need to con-
sider the problem of keeping identity features, face attribute
features (gender, race, etc.) constant. In the unpaired task,
where different faces are used, various methods have to be
used to keep these attribute features intact as the face ages.
The addition of a large number of constraints may also make
it difficult for the model to converge, so using unpaired face
images for the face ageing task based on CycleGAN is also
a worthwhile and challenging task to explore.

Related work
Over the past decade, deep neural networks have achieved
great success in representation learning and have also been
widely applied to face aging. Wang(Wang et al. 2016) pro-
posed a recurrent face aging framework that is able to
smooth the aging process, but less identity information can
be maintained. Duong et al. successfully applied Deep Re-
stricted Boltzmann Machines (Nhan Duong et al. 2015,
2016; Duong et al. 2019a) and Deep Reinforcement Learn-
ing (Duong et al. 2019b,c) to face aging and have achieved
an impressive performance. However, these approaches still
need paired images with different ages of the same person
for model training.

The advent of GANs ushered a vigorous development of
face aging. Antipov et al.(Antipov, Baccouche, and Dugelay
2017) first deployed the conditional GAN for age transfor-
mation. Later, Zhang et al. (Zhang, Song, and Qi 2017) pro-
posed a conditional adversarial-auto-encoder (CAAE) that
leverages the high-level features of input images for the gen-
eration of target images. But their synthesized faces show
little change on aging effect for different age conditions.

Another line of research in face aging is based on Un-
paired Image-to-Image Translation, which models the age
progression and regression with one or two models. For ex-
ample, Song et al. (Song et al. 2018) proposed to use two
conditional GANs (Dual cans) to model face progression
and regression respectively.

Liu et al. (Liu, Li, and Sun 2019; Liu et al. 2021) com-
bined multi-level discriminator with a wavelet packet trans-
form (WPT) module for high-level age-related features ex-
traction to improve the visual fidelity of generated images.
Shao et al. (Shao and Bui 2022) further combined multi-
level generator with a WPT module for improving the iden-
tity verification confidence in face aging. All three articles
use a p-dimensional vector to represent face attributes. The
p-dimensional attribute vector describing the input face im-
age is embedded to both the generator and discriminator
to reduce matching ambiguity inherent to unpaired training
data. These three articles use cycle-consistent loss, which
is derived from CycleGAN, and they do not use the Cycle-
GAN framework but use the ideas of CycleGAN. However,
the three articles still use paired datasets.

Sun et al. (Liu et al. 2017) used a transition pattern dis-
criminative network to maintain identity information of ad-

jacent age groups. Wang et al. (Wang et al. 2018b) used a
h(x) (Alex Net) to extract face features and then compare
the similarity of two faces, which in turn kept the face iden-
tity information unchanged. Wang et al. (Wang et al. 2018a)
employ the deep Convolutional Neural Network model (Sun
et al. 2014) for face verification. Palsson et al. (Palsson et al.
2018) completed face aging with CycleGAN, but it did not
use p-dimensional vectors to represent face attributes, nor
did it use unpaired datasets for training. To be precise, there
is no model based on CycleGAN and trained using unpaired
images.

Proposed Solution
Pre-training
So, I used CycleGAN as the basic model, and made some
changes on the model to adapt it to the face aging task. And
I only use unpaired datasets to complete the task of facial
aging.

When using a paired dataset, each young image has at
least one corresponding old image. When using unpaired
images, however, the original dataset does not have this one-
to-one mapping relationship, which the model has to find for
itself.

CycleGAN is one of the best unpaired style migration
models. there are two generators and two discriminators in
CycleGAN, namely the aging generator, the rejuvenation
generator, the young image discriminator, and the old im-
age discriminator. The young image enters the ageing gen-
erator first to generate the ageing image. The ageing image
needs to enter the ageing image discriminator to determine
whether it is a real ageing image; in the second round, the
generated ageing image needs to enter the rejuvenation gen-
erator to generate the recovered young image. The recovered
young image needs to enter the young image discriminator
to determine whether it is the real young image. In addition,
the young recovered image needs to be as close to the young
original image as possible.

In this way, CycleGAN can establish one-to-one mapping
relationships in unpaired datasets.

The datasets were selected as small unpaired datasets:
AGFW-v2(Duong et al. 2019b) consists of 36,299 images
divided into 11 age groups spanning 5 years. In contrast to
other age-related databases, most of the subjects in AGFW-
v2 are not public figures and are unlikely to have signifi-
cant make-up or facial grooming, which helps embed ac-
curate ageing effects in the learning process. More impor-
tantly AGFW-v2 is an unpaired dataset, where younger faces
are not related to older faces in any capacity. In this paper,
we only do two age groups for the ageing and rejuvenation
tasks. If you need to do multi-age ageing, then training once
between each two age groups is sufficient.

The CycleGAN model looks for a one-to-one mapping
relationship between the two data domains. If the two data
domains differ by a large order of magnitude, the model
will become unconvergent. In this paper, the images of men
aged 10-29 years in the AGFW-v2 dataset are selected as the
young dataset, with 4997 images. The images of males aged
45-60 years were used as the older dataset, with a total of



4058 images. Training set: test set = 9:1. The images were
read in and scaled from 0 255 to -1 1 pixel values.

The face ageing task is, in essence, a style migration task.
So, for the pre-training, we directly used the original Cy-
cleGAN to do the training on the face images of the two age
groups. After 100 epochs of training, the results obtained are
shown in Figure 1.

Figure 1: The first row shows ageing, with the 16 young
originals on the left and the 16 ageing images on the right;
the second row shows rejuvenation, with the 16 old originals
on the left and the 16 rejuvenated images on the right.

As can be seen, not only does the ageing and rejuvenation
have little effect, but the generated images show significant
Checkerboard Artifacts. as shown in the Figure 2, the gener-
ator loss values are not stable during training, no matter how
low the learning rate is set, and the results are sometimes
good and sometimes bad. The model was difficult to con-
verge and the loss function did not reflect the good or bad
training.

Checkerboard Artifacts are the result of an “Uneven over-
lap” due to deconvolution. This causes one part of the image
to be darker than the rest.

When we use deep learning to generate an image, it is of-
ten based on a low-resolution image with high level seman-
tics. This will allow deep learning to fill in the details on this
low-resolution image. In general, to perform the conversion
from a low-resolution image to a high-resolution image, we
often have to perform deconvolution. In simple terms, the
deconvolution layer allows the model to draw a square on
the high-resolution image through each point. The Checker-
board Artifacts are generated in relation to the stride, kernel
size of the deconvolution. If the kernel size is not divisible
by the stride, the output of the deconvolution will be uneven

overlap.

Solution

Previous solutions, where multiple layers of repeated decon-
volution would make the board more complex than effective.
This problem is well solved by using a stride of 1 for the de-
convolution, but a stride of 1 prevents up-sampling. Decon-
volution takes a kernel size that is divisible by stride, but still
produces Checkerboard Artifacts if our kernel is unevenly
learned.

Therefore, this paper does not use deconvolution. When
up-sampling is required, the feature image is first increased
to the required size using linear interpolation, and then the
number of channels is reduced by a 1x1 convolution layer,
thus achieving the up-sampling effect of the original Cycle-
GAN network with deconvolution.

At the same time, WGAN (Arjovsky, Chintala, and Bot-
tou 2017) and WGAN-GP(Gulrajani et al. 2017) were intro-
duced to replace parts of the original GAN(Goodfellow et al.
2020) to make the model training more stable and reason-
able. After several training sessions, it was also found that
changing the instance normalization to batch normalization
gave the model normal results.

Experiments

During training, the weight of the penalty term in WGAN-
GP is set to 10. Batch size was set to 16 and the initial learn-
ing rate was 0.0002. Training set: test set = 9:1. The model
was trained using Adam optimizer. GAN loss weights were
set to 2 and cycle loss to 1. cycle loss weights were raised
to 5 when training steps were greater than 3000. When steps
are greater than 5000, the learning rate is 0.0001 and the cy-
cle loss weight is increased to 10. for steps greater than 7000,
the learning rate is 0.00001 and the cycle loss weighting is
increased to 20. for steps greater than 10,000, the cycle loss
weighting is increased to 20. The learning rate mentioned
above refers to the learning rate of the generator, and the
learning rate of the two discriminators is only 1/3 of that of
the generator.

When training, a total of four networks needs to be
trained, and while one network is calculating the gradient
and updating the parameters, the weights of the remaining
three networks need to be frozen.

After training for 100 epochs, the training process was
very stable. The loss of generators is shown in Figure 3. The
generated images are shown in Figure 4. Thanks to the use of
CycleGAN, we also obtained a rejuvenation generator, and
Figure 5 shows the effect of rejuvenation.



Figure 2: The generator loss values are not stable during training

Figure 3: The loss of generators

Figure 4: The left-hand image in each column of the figure
is the young original image and the right-hand image is the
old generated image.

Figure 5: The left-hand image in each column of the figure
is the old original image, the right-hand image is the young
generated image.



FG-net aging task rejuvenation task
FACE++ 77.243 75.305 79.786
Baidu AI 91.980 91.604 93.459

Table 1: The results of the comparison

From a subjective point of view, the generated image is
completely free of Checkerboard Artifacts and the image
clarity is comparable to that of the original image. To the
naked eye one can easily see the signs and effects of age-
ing and rejuvenation, and one can also see that it belongs to
the same person as the original image, i.e., that the identity
features remain the same.

For the face ageing task, an evaluation of the age accuracy
and identity retention of the generated images is required.
Here we use MEGVII’s FACE++(2020) and Baidu AI face
comparison and face attribute recognition functions. Face at-
tribute recognition is still very difficult task and the recogni-
tion accuracy is very low even with the most advanced mod-
els. FACE++ and Baidu AI are tested here using the FG-net
dataset, a paired training set with 818 images, and a test set
with 170 images. The dataset contains photos of 82 people
at different ages, and also provides information on 68 key
points of faces in each image.

Age recognition was performed using FACE++ and Baidu
AI on images of men aged 10-29 and 45-60 in FG-Net, re-
spectively. For FACE++, the accuracy was 77.59% and the
1-off accuracy was 94.83%. For Baidu AI, the accuracy was
45.65% and the 1-off accuracy was 97.83%. The 1-off accu-
racy rate here refers to the fact that recognition of adjacent
age groups is also considered correct, which is a common
accuracy rate in the field of face age recognition.

It can be seen that FACE++ has better recognition.
When measured using FACE++, the ageing accuracy was

93.55% and the rejuvenation accuracy was 81.25%. When
using Baidu AI, the ageing accuracy was 83.87% and the
rejuvenation accuracy was 62.5%. It can be seen that the
ageing accuracy of the model is much higher than that of
rejuvenation.

It is also necessary to do an assessment of identity reten-
tion, using the face matching function of FACE++ and Baidu
AI. Here FG-net is used for comparison. This is because FG-
net is an image of the same person at different ages, which
is the most realistic of real-life ageing situations. The results
of the comparison are shown in Table 1.

FACE++ and Baidu AI use different comparison algo-
rithms, and the same FG-net only has an identity verifica-
tion confidence of 77.243 in FACE++, while in Baidu AI it
has an identity verification confidence of 91.98. When using
FACE++, the identity verification confidence for the old im-
ages generated by the ageing task and the original young im-
ages was 75.305, while the identity verification confidence
for the rejuvenation task was 79.7855. The identity verifica-
tion confidence of the ageing model was very close to that of
FG-net. Similarly, when using Baidu AI, the identity verifi-
cation confidence for the old images generated by the ageing
task and the original young images was 91.604 and 93.459

ours 75.305
FG-net 77.243
PFA-GAN 85.870
Wavelet-GAN 87.530
Wavelet-multi-GAN 94.370

Table 2: 32 sample results compared with PFA-GAN(Huang
et al. 2020), Wavelet-GAN(Liu, Li, and Sun 2019), Wavelet-
multi-GAN(Shao and Bui 2022)

for the rejuvenation task. Similarly, when using Baidu AI,
the identity verification confidence for the older images gen-
erated by the ageing task and the original younger images
was 91.604 and 93.459 for the rejuvenation task. The iden-
tity verification confidence for the ageing model is also very
close to that of FG-net.

This means that the degree of identity retention of the age-
ing images generated by the method in this paper is compa-
rable to that of real-life ageing.

Of course, it is not possible to say that the closer the
identity retention is, the better; this metric has to be eval-
uated in combination with the ageing accuracy. Otherwise,
if the model adds no ageing features to the picture at all and
outputs the original picture exactly as input, the degree of
identity retention would get a good score of 100. As demon-
strated above, the degree of identity retention is not as good
with ageing as with rejuvenation, but the ageing accuracy is
higher with ageing than with rejuvenation.

Table 2 compares the Identity Verification Confidence as-
sessment using FACE++ with other models of facial ageing.

There is a gap between the degree of identity retention
of models trained using unpaired data based on CycleGAN
and mainstream models. However, there is no universally ac-
cepted uniform measurement method for face ageing tasks,
so many papers require questionnaires or online voting to
obtain subjective scores. The FG-net, which is the best rep-
resentation of real-world reality, only scored 77.243 on Iden-
tity Verification Confidence in FACE++, so the FACE++
Identity Verification Confidence is not necessarily a com-
plete reflection of the strengths and weaknesses of the age-
ing results.

Conclusion
In this paper, based on CycleGAN, we discarded deconvolu-
tion and used bilinear interpolation with 1x1 convolution to
accomplish the face ageing task using unpaired data. Even
though the final generated images are lower than the main-
stream face ageing models using paired data in all measures.
However, this is the first time that non-paired data is used
for the face ageing task.
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